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Data Assimilation: We need to improve
observations, analysis scheme and model
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Data Assimilation: We can also use it to
improve observations and model

OBSERVATIONS 6 hr forecast ]
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal, namely
e

1) Combine optimally observations and model
forecasts
 We should also use DA to:
2) Improve the observations
3) Improve the model
* Also, do more truly coupled DA:

4) Example: The ocean and the atmosphere are
coupled: obviously the best DA should be coupled

e Earth system models used by IPCC have many
submodels, but they don’t include the Human system,
which totally dominates the Earth system.

5) We should do DA of the coupled Earth
System-Human System



2) Improve the observations: Ensemble Forecast

Sensitivity to Observations and Proactive QC
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* Kalnay et al. (2012) derived EFSO

e Otaetal. (2013) tested 24hr forecasts and showed EFSO
could be used to identify bad obs.

* Hotta (2014) showed that EFSO could be used after only
6 hours, so that the bad obs can be withdrawn and
collected with useful metadata so they can be improved.

* We call this Proactive QC, much stronger than QC.
e Hotta also showed EFSO can be used to tune R

* Lien (2014) tested EFSO to identify useful observations
of precipitation, with good results.
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Total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
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Estimated Error Reduction: 39.06%
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Feb. 18 06UTC, near the North Pole

(Ota et al. 2013 case). Suspect: MODIS
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EFT=24 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=24hr
[60°N,40°E,70°E]

Estimated Error Reduction: 66.04%
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Can identify the bad observations after only 6 hours!



On Feb 18, 06 UTC 2012, MODIS Winds were identified as “flawed” observation
Rejection of the detected “flawed” observations in fact improved the forecast!
EFSO estimated much stronger “correction” (right panel) than the actual impact
(middle panel)
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Ensemble Forecast Sensitivity to Error Covariances
Hotta (2014)

 Daescu and Langland (2013, QJRMS)
proposed an adjoint-based formulation of forecast

sensitivity to B and R matrix.

e Daisuke Hotta formulated its ensemble equivalent for R
using EFSO by Kalnay et al. (2012) :
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where z is an "intermediate analysis increment” in observation space



Result from GFS / GSI-LETKF hybrid

Averaged R-sensitivity Averaged R-sensitivity
Moist .Energy norm, EFT=6hr Moist Energy norm, EFT=24hr
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Positive value: error increases as s,2 increases = should decrease s,_?

Aircraft, Radiosonde and AMSU-A: large positive sensitivity
MODIS wind : negative sensitivity

- Tuning experiment:
 Aircraft, Radiosonde and AMSU-A: scale s,2 by 0.9
* MODIS wind: scale s,2 by 1.1



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr | Moist Energy norm, EFT=24hr
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Aircraft, Radiosonde and AMSU-A: significant improvement of EFSO-
impact
MODIS wind : insignificant difference in EFSO

|IASI: Significant improvement in EFSO although its error covariance is
untouched!



2) Effective Assimilation of Real Precipitation
(Guo-Yuan Lien, E. Kalnay and T Miyoshi)

Assimilation of precipitation has been done by changing the moisture Q in
order to make the model “rain as observed”.

Successful during the assimilation: e.g., the North American Regional
Reanalysis had perfect precipitation!

However the model forgets about the changes soon after the assimilation
stops!

The model will remember potential vorticity (PV).

EnKF should modify PV efficiently, since the analysis weights will be
larger for an ensemble member that is raining more correctly, because it
has a better PV.

However, ~7 years ago, we had tried assimilating precipitation
observations in a LETKF-SPEEDY model simulation but the results were
POOR!

Big problem: precipitation is not Gaussian.
We tried a Gaussian transformation of precipitation and it worked! 44



Example of Gaussian precipitation transformation
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Average analysis and forecast errors (OSSE)

(@) RMS errors: U (m/s) - Analysis (b) Forecast
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RAOBS: Assimilate rawinsonde observations

GTcz: Assimilate rawinsondes + uniformly distributed global precipitation using GTcz
GTbz: Assimilate rawinsondes + uniformly distributed global precipitation using GTbz
Qonly: Same as GTcz, but only update moisture field by precipitation assimilation

(Other variables show similar results)



REAL OBSERVATIONS (TMPA)

Example of Gaussian precipitation transformation
TMPA 6h Pec;p (mm) [OOZO1JUN2006]
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RESULTS: Average RMSE/bias vs. forecast time

(a) RMSE/Bias [GL]: U (m/s) at 500hPa (b) RMSE/Bias [GL]: T (K) at 500hPa  (c) RMSE/Bias [GL]: Q (g/kg) at 700hPa
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Global results Solid lines: RMS errors Dashed lines: Biases

e RAOBS: Control

e No transform (NT) gives very bad results.

e The standard Log transformation: marginal results.
* Good for moisture, but bad for temperature.

* GTcz and GThz are almost the same, both leading to clear positive impacts.

e These required several conditions to be successful: many observations don’t help!



Guo-Yuan Lien (2014)

EFSO average impact of rain observations

(a) Average obs |mpact (10-4J/kg) [MTE, EFT= 6h] All obs
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This also shows that EFSO
Assimilating the precip obs can be used to optimize the

identified by EFSO as good

DA of new instruments
improves the results.

efficiently!



One-month time series: Analysis U (m/s) at 500 hPa

Guo-Yuan Lien (2014)
RMSE [GL/anal]: U (m/s) at 500hPa
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3) Improve the models: Parameter estimation

and estimation of bias using DA
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* Model tuning on long time scales should be done with
EnKF parameter estimation.

 Kang et al., JGR, 2011, 2012 showed that evolving
surface carbon fluxes can be estimated accurately at the
model grid resolution from simulated atmospheric CO2
observations (OCO-2) as evolving parameters.

* Another approach is the use of analysis increments to
estimate model bias (Greybush et al., 2012, Mars) and
even state-dependent model bias (e.g., El Nifio bias), as
in Danforth et al. 2007.



Surface carbon fluxes from atmospheric
assimilation of meteorological variables

and CO2 obtained as evolving parameters
(OSSE). Kang et al., JGR, 2012
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OSSE
Results
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Example: Mars Bias Correction

Steve Greybush (2012)
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Mars TES/LETKF Performance

Reanalysis Performance: RMSE of 0.25-sol Forecasts

15 N N I 1 T
-
o
= 10
o
o
=
<
2 5
=
@
O 1 1 1 1 1 1 L
0 50 100 150 200 250 300 350
Ls [deg]

= = = Fixed Dust Free Run
= = = Seasonal Dust Free Run Seasonal Dust Reanalysis
= = = TES Dust Free Run TES Dust Reanalysis

TES Observations + = = TES Dust with Bias C.

Fixed Dust Reanalysis




Example: How to define the diurnal model
errors using EOFs from a Reanalysis
(Danforth et al., 2007)

Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast

(started from reanalysis) minus the reanalysis.

Then they computed the EOFs of the anomaly in
the model error, and found two dominant EOFs
representing the model error in representing the
diurnal cycle:
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Example: How to find the state dependent
errors using coupled SVD’s
(from Danforth et al., 2007)

Three leading coupled SVD’s of the covariance of 6 hr forecast
errors and corresponding model state anomaly for T at
sigma=0.95. Contours: state anomaly, colors: heterogeneous
correlation with forecast errors. Note that over land, the
corrections suggest the anomalous temperatures are too strong,
and over ocean too weak and too far to the west.

This can be extended to improving forecasts using coupled SVD’s



sig=0.95 Temp Jan 1982-86 Correlation Maps




4) Truly coupled data assimilation: the ocean
and the atmosphere DA should be coupled

* We used to have atmospheric and oceanic
models that were coupled one-way: the
atmosphere could see the ocean SST, but could
not change it; the ocean could see the
atmospheric fluxes, but could not change it.

e Until we had the first coupled ocean-atmosphere
model, we could not predict coupled
phenomena, like El Nino!

DA should also be fully coupled!



Tamara Singleton’ s thesis

Data Assimilation Experiments with a
Simple Coupled Ocean-Atmosphere Model

Questions she addressed:

-- Which is more accurate: 4D-Var or EnKF?

-- Is it better to do an ocean reanalysis separately, or as a
single coupled system?

-- ECCO is a version of 4D-Var where both the initial state
and the surface fluxes are control variables. This allows
ECCO to have very long windows (decades) and estimate
the surface fluxes that give the best analysis.

Is ECCO the best approach for ocean reanalysis?




Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with long

windows) have about the same accuracy.



Answers to the Research Questions

Questions:

-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?

Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are fairly good.



Answers to the Research Questions

Questions:

-- |Is ECCO 4D-Var with both the initial state and the surface

fluxes as control variables the best approach?
In our simple ocean model 4D-Var cannot remain accurate with

very long windows. Our ECCO reanalysis remained satisfactory
with very long windows but at the expense of less accurate
fluxes.
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Are the ECCO fluxes more accurate?

RMS Errors (Flux 3 Estimate)
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ECCO does not improve the flux estimates



Basic idea for our coupled LETKF assimilation

Observations

observation
localization

Coupled Mode| ==

Thanks to
Miyoshi, Penny



The development of climate models, past, present and future

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?
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5) Earth and Human System

* The Earth System is completely dominated by
the Human System.

 |In order to understand their interactions we
need to couple them bidirectionally, i.e., with
feedbacks.

e Currently, IPCC models and even Integrated
Assessment models don’t include population:
it is exogenously obtained from UN estimates.
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Human and Nature Dynamical model (HANDY)
with Rich and Poor: for thought experiments

Just 4 equations!

Total population: Elite + Commoners X=X + XC

Nature equation: (only the Commoners produce)
y = y(A —y)—Productiond x,.y
The Wealth is managed by the Elites: Inequality factor K ~ 100
W = Production-Commoner consumption-Elite consumption = X .y — sx. — KSX,

Population equations: death rate depqids on whether there is enough food:

w
« (death rate) o(Poon)=a,, — (e, —t,)——

wha X ==0cXc + PeXe
%& ~~~~~~ Xp=—0pX, + ﬁExE

a(Rich)=a,, — k(e — am)L
w,

w

Wmm

1/x 1

The rich Elite accumulates wealth from the work of everyone else (here referred to as the

Commoners). When there is a crisis (e.g., famine) the elite can spend the accumulated
wealth to buy food.



Human and Nature Dynamical model (HANDY)

with Rich and Poor: a thought experiment
?;M Unequal Society: Irreversible, Type-N (Full) Collapse

40 .
High Inequality
Wealth _
015 );M Commoners K =100
20 (Equivalent) | High Depletion
Elites
8§M lead to collapse
0 A N
0 50 100 150 200 250 300 350 400 450 500

Time (Year)

The accumulated wealth starts decreasing at the time the total equivalent
population crosses the Carrying Capacity. This “economic crisis” provides
a very obvious indication that the population has grown beyond the
sustainable level for the ecological system. If the overshoot is small, it
oscillates towards equilibrium. If it is large, it leads to collapse.



Human and Nature Dynamical model (HANDY)
with Rich and Poor: a thought experiment

?)}(LM Unequal Society: Irreversible, Type-N (Full) Collapse o Nature declines with popu|aﬁon growth
40 L

e Using their wealth, the Rich can shield
themselves from environmental degradation,
which first affects the Poor

Wealth
Commoners

(Equivalent)
Elites

e Eventually it reaches the upper classes as well,
when it is too late to take preventive measures

0 50 100 150 200 250 300 350 400 450 500
Time (Year)

After ~250 years, having surpassed the sustainable Carrying Capacity of the planet,
the population is drawing down the accumulated capital to survive

This thought experiment shows how a crisis can happen rapidly, even though it appears
that population is rising steadily without any problems, and that the wealthy would not

feel the effects of the collapse until it is too late for the poor (and then it is too late for
the rich as well!).



If we reduce the depletion per capita to its optimal
value and the inequality (k =10) it is possible to reach
a steady state and survive well

%)iM Unequal Society: Irreversible, Type-N (Full) Collapse i );iM Unequal Society: Soft Landing to Optimal Equilibrium

40 ) 4 ) (Equivalent) Elites
Wealth Wealth
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5 Commoners o Nature
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0X 12 0 Xy
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0 ) e e A N ] 00
0 50 100 150 200 250 300 350 400 450 500 O 100 200 300 400 500 600 700 800 900 10
Time (Year) Time (Year)

Reaching this equilibrium required changes in policies:
 Reduce depletion per capita

* Reduce inequalityk — 10
 Reduce birth rates

http://www.sciencedirect.com/science/article/pii/S0921800914000615
Journal of Ecological Economics




Consider the impact of adding fossil fuels,
l.e., nonrenewable enerqgy to Nature

80,000 pp1$ Classic Full Collapse (Regenerative Nature Only)
100 eco

4(1)88 szi (Regenera tive i W h at h a p p e n S
Nature
0 ool bl ale (Equivalent) Elites W h e .r] We a d d
o fossil fuels?
0 eco$

0 70 140 210 280 350 420 490 560 630 700
Time (Year)

This is the classic HANDY1 full We then add to the

collapse scenario, with only regenerating Nature a
regenerating Nature nonrenewable Nature



Impact of adding fossil fuel
(nonrenewable) energy to Nature

80K 4Million
80’(1)88 pp1$ Classic Full Collapse (Regenerative Nature Only) 4M ppl Full Collapse with Regenerative and Nonrenewable Stocks
eco 100 $
100 eco$ ommoners 100,000 ceos Wealth
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Time (Year) Time (Year)
This is the classic HANDY full We added to the
collapse scenario, with only regenerating Nature a
regenerating Nature nonrenewable Nature

The collapse is postponed by ~200 years and
the population increased by a factor of ~20!



Variables of COWA (Coupled Water model)

Precipitation
Groundwater

Recharge Evaporation

Ground

water River Inflow | #4=500 E1E A River Outflow

Surface Water

Groundwater Withdrawal
Withdrawal

Births/Deaths
Migration

AN Freshwater
Water Supply

Population

Consumption

Applied to the Phoenix, Arizona watershed



Surprise: Double Reservoir Capacity ...
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* By doubling the reservoir capacity to z,, = 10, population can grow to a
maximum of 23V, compared to 14M.

* However, groundwater ends up at a very low level of 50 ckm. Stricter
groundwater withdrawal policies can prevent this.

* Without coupling the population we would not get this result.

 We should fit the observations and obtain parameters with EnKF.



SUMMARY

e Future applications of EnKF

— 1) Combine model forecast and observations to
create the best initial conditions v/

— 2) Improve observations

— 3) Improve models

— 4) Do more truly coupled data assimilation

— 5) Do coupled Earth and Human modeling and DA.



